


**Environmental Energy Technologies Division** Lawrence Berkeley National Laboratory

# Toward future's clean power system: lessons from the past

Berkeley Tsinghua Energy Forum
LIN Jiang, and Andrew Satchwell
October 21, 2016

# 劳伦斯引入大团队科学研究 劳伦斯伯克利国家实验室:能源部第一个国家实验室



# 13 Nobel Prizes





Luis W. Alvarez



**Melvin Calvin** 



Chamberlain



**Steven Chu** 

**Intergovernmental Panel on** 



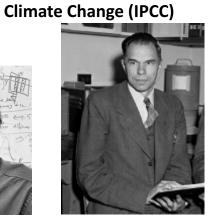
Donald A. Glaser



**Ernest Orlando** Lawrence



Yuan T. Lee






Edwin M.



**Saul Perlmutter** 



**Glenn T. Seaborg** 



Emilio G. Segrè



**George F. Smoot** 

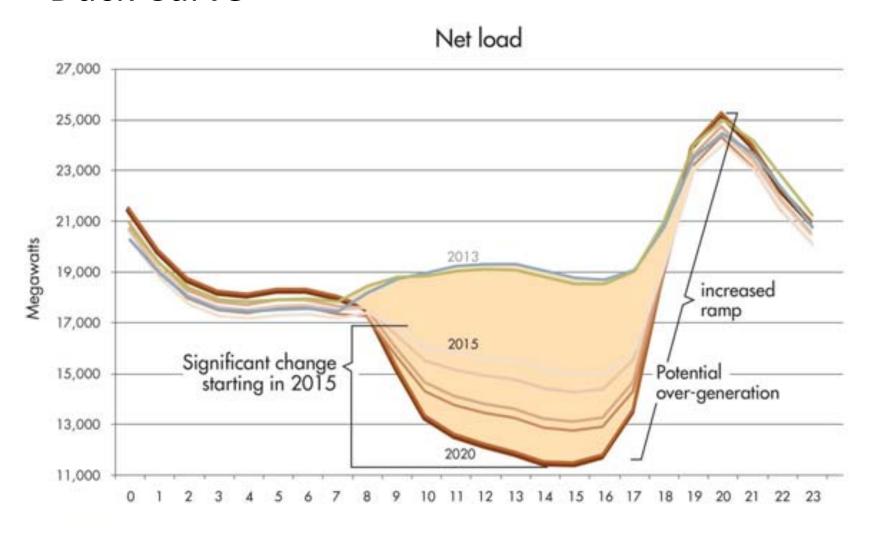
# History of Electricity Reform in US



History of Deregulation of Utility since 1990

Emergence of RTO/ISO and wholesale market

# California: the clean power frontier




- Most ambitious goal for renewable power
  - 33% of renewables by 2020
  - 50% of renewables by 2030 (excluding hydro)
- Half of solar installation in US
- Leaders in energy efficiency in US
  - Appliance standards
  - Building codes (updated every three years)
  - "Decoupling" and strong utility efficiency programs
- Robust carbon market covering power sector

# The Future: can the duck fly?



#### Duck Curve



# History of Deregulation since 1990



- Pre-1990
  - Vertically integrated utilities
  - Cost of services regulation
- 1990 Restructuring/deregulation
  - Unbundling of generations from T&D
  - Direct access/Retail competition
  - Wholesale power markets
- Current thinking
  - Meeting environmental/climate targets
  - Deregulation inactive
  - Emergence of ISO/RTO
  - Wholesale power market
  - Retail competition
  - Future utility model (NY REV)

# History of Power Sector Reform



- Goals:
  - Reliable supply of power at least cost
- Pre-1990
  - Vertically integrated utilities
  - Cost of services regulation
- Problems
  - Overly optimistic forecast of future demand growth
  - High cost of generation
- Solutions
  - Lead to some separation of functions, ie, independent demand forecast
  - Lead to deregulation of utilities

# Optimistic, or system-bias?



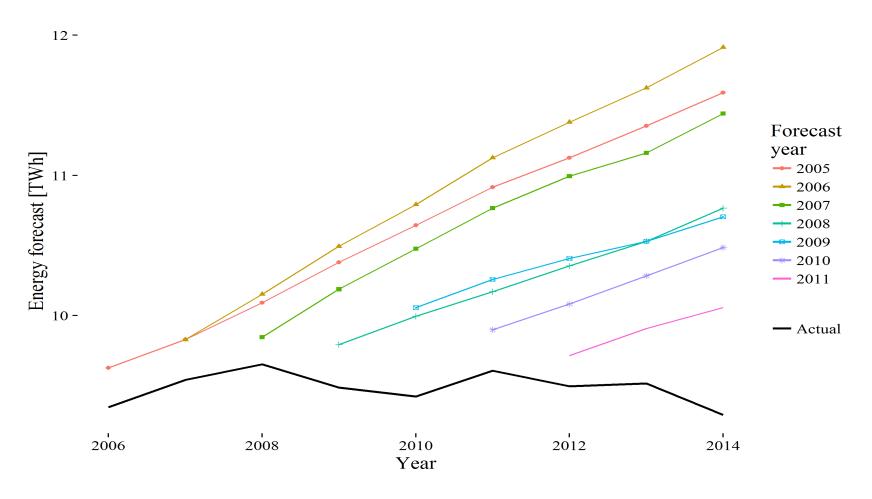
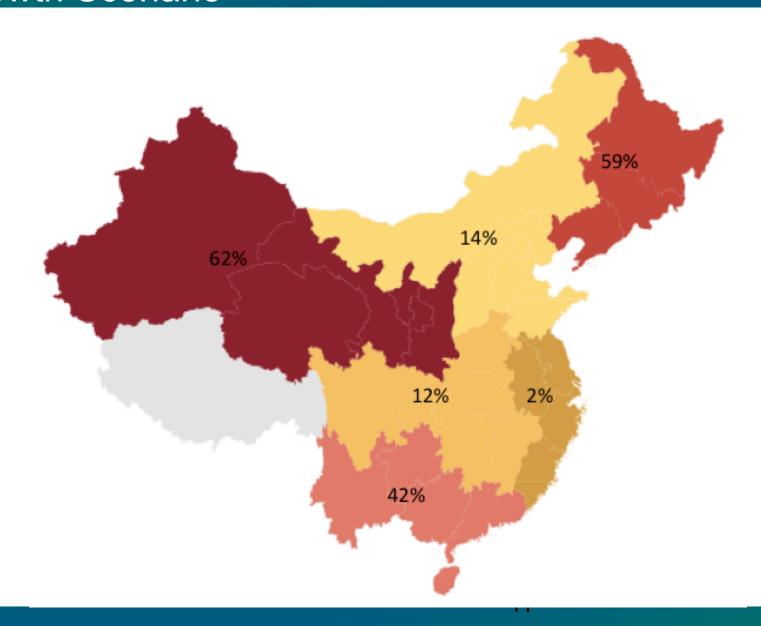


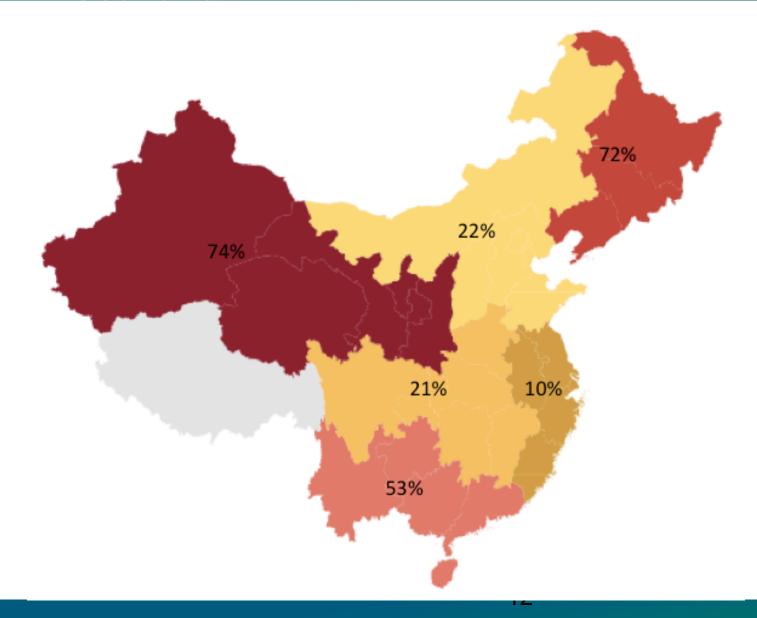

Figure ES-1 Load forecasts from seven subsequent IRPs and actual load for a Western U.S. utility.

# Planning reserve margins in China, 2014






10


# Planning Reserve Margin in 2020 under the High Growth Scenario





# Planning Reserve Margin in 2020 under the Low Growth Scenario





#### History of Power Sector Reform: mid-1990s to 2010



- Goals
  - Increasing economic efficiency and reduce costs
- 1990s Restructuring/deregulation
  - Unbundling of generations/retails from T&D
  - wholesale market
  - Direct access/retail competition
- Problems: CA crisis in late 1990s
  - 2000-2001: poor market design and market manipulations led bankruptcy of two large IOUs
- Solutions:
  - Some states back to re-regulation
  - Many remain the unchanged

# Deregulation has stalled in most states





Source: Energy Information Administration

### Rate Impact Limited:



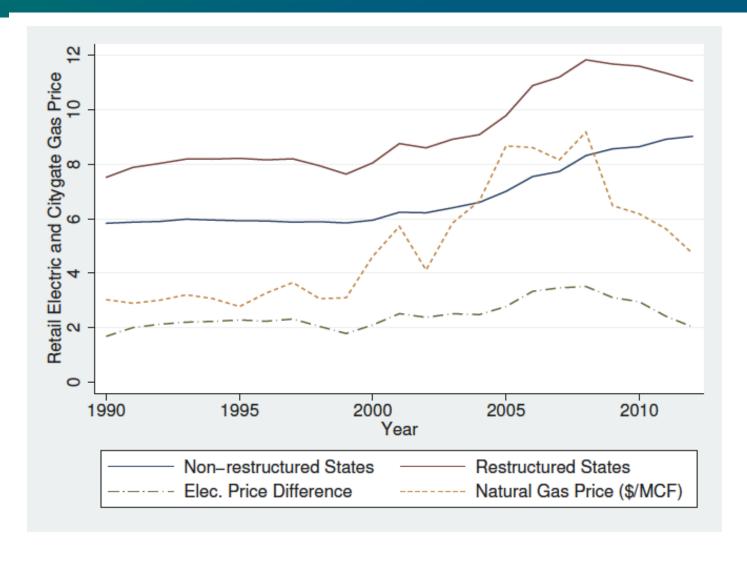



FIGURE 6. U.S. AVERAGE RETAIL RATES AND NATURAL GAS PRICES

# Observation: Utility Deregulation in US



- Still heavily regulated industry
- Unbundling of generation and competition improved efficiency at power plants
- Open access to transmission grid is essential
- Improved coordination of power grids (ISO/RTO)
- Limited impact on average consumer costs
  - Economic vs social costs?
- Other benefits unclear:
  - how to value customer choice?
- Implementation poses significant challenge

#### Drivers of current reforms



- Environmental/Climate Change
  - Meeting GHG targets
  - RPS
  - Clean Power Plan
- Technological
  - Rapid cost reductions and expansion of for solar and wind
- Business model
  - Leasing
- Utility model
  - Customer defection
  - Declining revenue base



# RTOs/ISOs and wholesale energy markets in the US

#### What is an RTO/ISO?



- independent organizations managing transmission access
- Responsible for the economic scheduling of generation that takes into account reliability and capacity constraints on transmission system
- Three key RTO/ISO roles:
  - Generation and load balancing for transmission reliability
  - Market operations
  - Planning
- Don't own power lines, substations, or other utility equipment
- Are a neutral party monitoring the transmission network and managing competitive energy markets

#### Where are the RTOs/ISOs?



- Seven in the U.S. and market rules and tariffs are regulated by Federal Energy Regulatory Commission (FERC)
- Some parts of the U.S.
  have no RTO/ISO and
  instead utilities offer open
  transmission access tariffs
  and rely on bilateral
  energy contracts



Figure: http://sustainableferc.org/iso-rto-operating-regions/

# Wholesale Energy Markets



- Purpose is for the economic efficient use of transmission and generation
- Market products and rules vary among

|                                          | CAISO     | ERCOT     | ISO-NE            | MISO      | NYISO     | РЈМ            | SPP       |
|------------------------------------------|-----------|-----------|-------------------|-----------|-----------|----------------|-----------|
| Day-Ahead/<br>Real-Time<br>Energy Market | ✓         | ✓         | ✓                 | ✓         | ✓         | ✓              | ✓         |
| Capacity Market                          |           |           | ✓                 | ✓         | ✓         | ✓              |           |
| Regulation<br>Market                     | ✓         | ✓         | Real time<br>only | ✓         | ✓         | Real time only | ✓         |
| Offer Energy<br>Floor/Cap<br>(\$/MWh)    | -150/1000 | -250/7000 | -150/1000         | -500/1000 | None/1000 | None/1000      | -500/1000 |

#### Lessons learned



- Utility industry is likely to remain carefully regulated
  - Wholesale market is complicated and takes time to form, needs to be carefully monitored and regulated
  - Need to balance economic, social, and climate goals
- Competitive generation has led most of the economic efficiency gains.
- Rate impact on average consumers has been limited.
- ISO/RTO have improved grid operation
- Independent demand forecast is foundational to good resource planning
- Meeting climate goals require new thinking

#### **Research Questions**



- What types of models are best suited for load forecast?
  - At what geographic/demographic resolution?
- What KPIs to evaluate retail competition/choice?
   Wholesale competition?
- Generation planning quota: is it time to phase it out?
- What mechanism to ensure environmental and climate goals?
- What infrastructure is needed to make both production and demand more "responsive"
  - Dynamic pricing?
  - Tools to allow operators and consumers to make smart choices



- Thank you
- J\_lin@lbl.gov